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Resonant ultrasound spectroscqi®US) is a method whereby the elastic tensor of a sample is
extracted from a set of measured resonance frequencies. RUS has been used successfully to
determine the elastic properties of single crystals and homogeneous samples. In this paper, we study
the application of RUS to macroscopic samples of mesoscopically inhomogeneous materials,
specifically rock. Particular attention is paid to five issues: the scale of mesoscopic inhomogeneity,
imprecision in the figure of the sample, the effects of Qwoptimizing the data sets to extract the
elastic tensor reliably, and sensitivity to anisotropy. Using modeling and empirical testing, we find
that many of the difficulties associated with using RUS on mesoscopically inhomogeneous materials
can be mitigated through the judicious choice of sample size and sample aspect ra2002©
Acoustical Society of AmericaDOI: 10.1121/1.1463447

PACS numbers: 43.35.Cg, 43.35.Yb, 43.20[K&K]

. S €ij
In this paper, we explore the application of resonant ul- 2

trasound spectroscopRUS) to macroscopic(e.g., Lmacro  is theij =ji component of the strain tensor, angis theith
=0.1 cm—10 cmsamples of rock in order to learn the elas- component of the displacement field. We use notation in
tic tensor. Rocks are consolidated materials, typically asgyhich repeated indices are summed. The equation of motion
sembled from aggregates of mesoscopic sized pieees,  for the displacement field is

L mesg= 10 um—100um) of microscopically uniform mate-

rial (length scalel ,). They are mesoscopically inhomoge- U Joj

. INTRODUCTION AND BACKGROUND 1((9ui auj)
- 2

&Xj X

neous, that is, inhomogeneous on a scale small compared to Pz~ (9_x] ©
the sample size but large compared to the microscopic length

scale € macre™ Lmese™L ). Rocks are not easily machined to Wwhere

precise shapes. While the microscopic scale symmetry is ho- o€

mogenized by the process of their assembly, these samples 0= (4)

. ’ a(au;ax;)
may have macroscopic symmetry of great importance. For

example, rock samples commonly have symmetry due tds the stress field.

bedding planes or other features related to their construction. For a finite sample, the elastic equations of motion are
Our goal is to proscribe the conditions necessary for the sucomplemented by the requirement that the normal compo-
cessful use of RUS on rock and rocklike materials. Thesaents of internal stresses balance the external stresses at the
conditions include constraints on sample preparation andurface of the sample. That is,

constraints on the set of reasonable questions that can be

answered with RUS. Ti(X)Ni(X) = Pi(x), ®)

The success of RUS derives from the sensitivity of thewhere n is the normal to the surface a and P; is the
normal mode frequencies of a sample to its elastic struéturengrmal component of the external stress applied to the
The elastic structure affecting resonance frequencies hagample atx.
three components: the figure of the sample; the homogeneity  For linear systems, the elastic tensoy relates the
of the sample; and the elastic tensor of the sample, includingtress field to the strain fieldr;; = Cij €. Because both
symmetry and orientation. Given a perfectly homogeneoustress and strain are symmetrig; = o, and €;=¢;; , the
sample with a precise figure, the elastic tensor can be derivegbtation is commonly contracted such that stress and strain
to a very high degree of accuraty. are six-component rank-one tensors, and the elastic tensor is

The definition of the elastic tens@j;,, comes from an  a 6x 6 rank-two tensot.In the contracted notation,
expansion of the free energy of an elastic system to second

order in the strain field, 0a=Cop€p, (6)
g: 80"’ %Cijkleijekl , (1) Where X:]., y:2, Z:3, 611-: &-'l, €op= €p, €33= €3, €3
=¢€,, €31= €5, €1,= €5, and similarly for the stresses. For an
where isotropic sample, the symmetry of the system allows further
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reductions of the elastic tensor until only two elements arébe bonded to the surfaces of the sample. The boundary con-
independent, dition can be ignored if the pulse width is small compared to
the sample width. The transmission tirhef an ultrasonic

A+ 2u A A 000 pulse across the sample is measured. Given the distance from
Y At 2u A 0 0 0 source to receivek, and density of the sampjg the wave
\ A A+2u 0 0 O velocities and elastic 2tensor can be dzetermined. From
Cop= 0 0 0 L0 o (7) =L/, C11=)\+2/L=pvc, andcy= u=pvs, wherev. and
v are the compressional wave velodityave vector parallel
0 0 0 0O u O to displacementand shear wave velocitiwave vector per-
0 0 0 0 0 u pendicular to displacementespectively. To determine both

compressional and shear velocities, transducers that produce
orcy =A+2pu, €=\, andcyy=p=(C11—C15)/2. The con-  compressional and shear waves are bonded to the sample in a
stantsA and p are called the Lameoefficients;cq, is the variety of orientations.
compressional modulus, arei, is the shear moduluéu). Resonant ultrasound spectroscopy is an alternative tech-
Other sets of two independent coefficients are also commomjique for determining the elements of the elastic tensor of a
such as the bulk modulus and shear modul#s={  sample. In RUS the frequencies Rflow-lying modes of a
+2u/3,G=p), or Young's modulus and Poisson’s rafi6  free standing sample are measured. These measured frequen-

=p(BN+2u) (A p), v=N2(N+p)]. cies are compared f frequencies found by solving E¢),
In terms of the Lamecoefficients, the equation of mo- hjle satisfying the free boundary condition set by E®).
tion, Eq.(3), for an isotropic sample is with P,=0. The modes of the sample are not simply com-
P pressional or shear waves, as is the case for pulse propaga-
pli=(\+ ) Wv'uﬂﬁzui , (8)  tion, but are complicated entities having both compressional
I

and shear character. Thus in RUS the problem of solving
and the boundary condition on the surface of the sample isEgs.(8) and(9) for the nth model resonance frequenty ,
has equal prominence with the problem of measuringhthe
)\V-uni+2,uﬁnk= = (9) expe_rimental resonance frque_nttxy._ The elements of the
IXy elastic tensor are found by minimizing

P;=0 for a free standing sample. N

Historically, the elements of the elastic tensor of macro- ~ df?= > (fX— f,'Y'(Caﬁ))2 (10
scopic inhomogeneous materials have been found using me- =t
chanical testingor ultrasonic time-of-flight measuremefits. with respect tac,p.-
In mechanical testing the strain in response to stress, the In Sec. Il, several issues pertaining to using RUS on
inverse of Eq.6), is measured between ambient conditionsinhomogeneous samples are discussed. In most cases, nu-
and failure in order to determine material strength and toughmerical modeling was used to explore ways to optimize ex-
ness. Components of the elastic tensor are found from meserimental chances for success. In Sec. Ill, the results of
chanical testing data as the slope of stress versus strain eRUS experiments on a variety of samples are displayed and
trapolated to low strain. For example,;=o04/€4, for low  discussed as well as a summary of our findings, describing
strain. A mechanical test is typically quasistatic, i.e., thethe bounds on RUS applicability to inhomogeneous materials
stress is varied slowlye.g., 0 MPa to 10 MPa in 1000.s found empirically and through modeling.
Mechanical tests are inherently high amplitude tests. The
grez_it dlsadyantage tq using such tests tq determine the IOW MODELING AND EXPERIMENTAL DEVELOPMENT
strain elastic tensor is that the sample is often altered or
destroyed as a result of the test. Thus results cannot be con- In this section we will apply the methods described in
firmed for a given sample and only part of the elastic tensoiisscheret al® to model and analyze experiments performed
can be determined for each run. In addition, mechanical tesbn macroscopic samples of rock. The assumptions inherent
ing often probes the sample at strains that activate its hystein the analysis will be discussed, as well as ways in which to
etic elastic response. Thus extrapolation of such data to lomnaximize the success of RUS on samples whose properties
strain is not reliablé. Our primary interest is in the elastic do not superficially satisfy these assumptions. Since rocks
tensor for low amplitude disturbances that is related to theare not single crystals, or even polycrystals, but are usually
propagation of acoustic waves. Generally, elements of thaggregates of multiple materials with different symmetry
elastic tensor found from mechanical testing have lowelproperties, we do not expect to be able to study detailed
value than elements of the elastic tensor inferred from timeproperties of specific modes of the sample, or to probe the
of-flight measurements. In other words, the quasistaticophisticated symmetries that may be present in the constitu-
modulus is less than the dynamic modulus. ents of the samples. Our goal is to characterize the aggregate

Time-of-flight determinations of the elements of the material. To this end, we will focus our attention on average
elastic tensor are measurements of the velocity of an acoustfeequency changes over multiple modes, i.e., we begin by
pulse propagating in the sample. The displacement caused laynswering the broadest questions, such as whether there is a
the acoustic pulse obeys E®), but the constraints set by good isotropic approximation to the elastic tensor of the
Eq. (9) at the sample surface are not met, as transducers musick. If we have a satisfactory answer to this question, we
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may ask whether there is a possible transverse isotropic ap- 10 3
proximation to the elastic tensor. In this work, we do not /
attempt to answer refined questions that focus on the behav-
ior of particular modes of a particular symmetry. ! 3

The experiment, measurement of resonance frequencies,
and numerical inversion is performed using hardware and
software developed by Dynamic Resonance Syst@Rs),

a commercial provider of RUS measurement systems. Nu-
merical inversion, i.e., determination of ; from Eq.(20), is
based on the Visscheet al® variational technique. The
analysis software finds model resonance frequencies using a
model of the elastic system in which it {8) free standing,

(B) spatially homogeneous, a@) a rectangular parallelepi- 0.01
ped. Departure of the experimental system or sample from 1 N 3

these three conditions can introduce shifts in the experimen- Position

tally measured frequencies that will introduce errors in therig, 1. percentage frequency shift as a function of mass perturbation place-
derived elastic tensor. How well our system and samplesent. The perturbation is moved through a two-dimensional rectangle as
conform to(A), (B), and(C), and estimates of the error in- shown in the inset.

duced by nonconformity are discussed below.

Rock and similar type samples, e.g., concrete, have relerties of consolidated materials, i.e., materials that are meso-
tively high acoustic attenuation, or lo@. Thus several very scopically inhomogeneous. We want to be able to regard
practical issues aris¢D) What can we do to make the reso- these materials as homogeneous. We adopt the rule of thumb
nance peaks distinct from one another and therefore wethat an inhomogeneous material looks homogeneous to a
definedAE) How do we acquire the most information out of propagating wave when the wavelength of the wave is much
the low-lying resonance peaks, the ones we can see clearlyjPeater than the length scale of the inhomogeneity.

That is, how do we maximize the dependence of the low- A simple calculation for a one-dimensional system with
lying resonances on the full elastic tensor? Finaly,how  free boundaries results in resonance wavelengythgl/n,
sensitive are we to anisotropy in the sample? We will showwherel is the length of the sample amdis an integer num-
here, that by altering the sample geometry, while maintaininper of nodes. Assuming that we need the first ten resonance
a rectangular parallelepiped shape, these practical issues ciiequencies to accurately determine two elastic constants
be addressed. with RUS! we want the maximum size of an inhomogeneity
&<l /5, wherel i, is the length of the smallest side of the
sample. This estimate is very conservative, since it is highly

The variational technique used to find model frequen-unlikely that all of the first ten resonant modes in a three-
cies, ', is based on recognizing that the displacement fieldiimensional sample will have nodes along a single direction.
satisfying the elastic wave equation with free boundaries owe use the rati@/| ,,,, to characterize the inhomogeneity of
the sample surface, Eg8) and Eq.(9) with P;=0, also  our samples, wheréis crudely determined by measuring the
makes the elastic Lagrangian of the sample statichdy. diameter of the largest area of color variation on the surface
approximate free boundaries in the experiment, the sourcgf a sample, e.g., the diameter of the largest black spot on a
and detector are most often placed at vertices of the parasample of Sierra white granite.
lelpiped, delicately supporting the sample. The sample is
nearly free standing. Holding the sample at vertices has the
further advantage of keeping the transducers away from the- Sample geometry, the figure of the sample
expected node lines of the resonant modes. When the full Samp|es of consolidated materials are difficult to ma-

resonance spectrum is complicated, transducers may k@ine without chipping, and often do not have perfectly par-
placed purposely at expected nodes, such as the center ofge| sides. How ideal must the figure of a sample be? This
face, to temporarily simplify the spectrum. Using transducergyuestion can be examined using the perturbation treatment of
for support limits the sample size. Our transducers are PZT-the elasticity problem sketched in the Appendix. To simulate
piezoelectric pinducers. We have limited our samples to lesghe effect of an error in the figure of a sample, a localized

|AflfF

<
-
-

A. Free boundaries

than 100 cr, and 250 g. mass is carried around a two-dimensional rectangular mem-
_ brane, and the frequency shift caused by this mass is calcu-
B. Homogeneity lated. The frequency shift for modeis given by
The elastic behavior of a consolidated material is prima- 2,2 Sf S
. . . n no n Y
rily determined by a macroscopic average over the bonds —wr~2f—=<un|—|un>, (11
between constituentgrains in a rock rather than by the no n Po

elastic properties of the constituents themselves. For exwhereu, andw, are thenth eigenmode and eigenfrequency
ample, the elastic behavior of sandstone, a quartz conglonof a perfectly shaped sample adg is the localized mass
erate, is more a function of grain-to-grain bond propertiegperturbation being carried around the sanipkse the Appen-
than of SiQ properties. We are interested in the elastic prop-dix). In Fig. 1, the average frequency shift of the lowest 20
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for a parallelepiped sample as a function of the aspect ratio,
c/a. The volume of the sample is fixedaxXbXc

=4.8 cn?, andb=1.1a. Aspect ratios greater than one cor-
respond to rodlike samples and are characterized by the num-
berc/a in Fig. 2. Aspect ratios less than one correspond to
platelike samples and are characterized by the numlzgc

in Fig. 2. A homogeneous, isotropic sample with elastic con-
stants appropriate to basalt was assumed. As the aspect ratio
is increased, the low-lying modes separate. For example, at
b=1.1a, c/a=4, we expect to be able to pick out 14 distinct
resonances before mode overlap becomes a serious problem
for a RUS experiment.

| a— Increasing the aspect ratio further might allow us to pick

6.0 -4.0 2.0 20 40 69 out even more distinct peaks. However, the RUS inversion
v ‘—y——J . . . . .

-ale cla code uses a fixed order polynomial to variationally fit

Aspect Ratio mode<® As one side of a sample becomes disproportionately

FIG. 2. Calculated resonance frequencies as a function of aspect ratio. THarge, a disproportionate number of nodes in the normal
sample is at a constant volume of 4.8%i=1.1a, and the aspect ratiois modes will be in that direction, and the inversion code will
c/a on the right side,—a/c on the left side. The elastic constants ag lose fitting accuracy in that direction. We have chosen to
=86.6 GPa and,,=31.9 GPa. keep samples at 1#c/a<4 (—4 to 4 in Fig. 2.

resonances of the membrane,
E. ¢4, dependence

20 2
SF= i 2 (%) , (12) A rule of thumB is that five resonance frequencies are
20 V= | fy needed to accurately determine each independent component

is shown as a function of the perturbation placement. The&f the elastic tensor. Thus for an isotropic material described
perturbation is carried along the sample edge and into thBY two independent components,, and 44, we need to
sample interior as shown in the inset in the figure. When th&xperimentally determine at least ten resonance frequencies.
perturbation is at an interior point it is essentially a 1% mas<-ertainly the confidence with which the two independent
distortion, when it is along the perimeter it is a 1% distortionc0mponents of the elastic tensor can be determined is influ-
of the figure. Distortions in the figure of the sample are muctenced by the involvement of each component in the first ten
more important than equivalent mass distortions in thenodes of the sample.
sample interior. A 1% chip out of the corner of a sample can  1he dependence of moaeon ¢, or €44 is given by the
produce a 1% change in the frequency. A 1% mass distortioderivative of thenth model frequency with respect to the
at the sample center produces less than 0.2% change in frBlodulus,
quency. _ 2c;; If M
The test calculation was performed on a two- Din==w —,
dimensional membrane. In three dimensions we expect small fn dCi
p
mass distortions to cause smaller frequency shifts than in twwherei =1, or 4. The derivatives are normed such tBat,
dimensions. Given the number of other contributors to erro+D,,= 1. Sincec,~cC,/2, i.e.,v,<v., We expect low fre-
in RUS measurements on consolidated materials, the contriguency modes to be more highly dependentcgnthan on
bution due to a mass or figure distortion is rather small. This,; (in analogy to the frequencies of the modes of a soft
conclusion was confirmed empirically by making RUS mea-spring versus a stiff spring networkindeed, for a cube of
surements on samples before and after chipping, and on vaibasalt, the first eight modes have an average dependence on
ous samples of the same size. cq1 Of less than 15%. That is, most low-lying modes are
shear modes, involving very little compression. However, the
geometry of the sample influences the dependence of a mode
on cq;. Platelike and rodlike samples will have low-lying
Consolidated materials are often found to have a lowbending or flexural modes that are compressional in nature.
quality factorQ, i.e., a high attenuation. At fixed amplitude, In Fig. 3, the mode dependence op, D4,, is shown
low Q materials have fewer observable resonance frequeras a function of the ratio of the longest side to the shortest
cies than highQ materials. Additionally the broader reso- side of the samples/a, for the first ten modes of a parallel-
nance peaks of lov materials overlap nearby peaks and epiped. The third side of the sample is held fixed with respect
complicate peak picking. However, the geometry of a sampléo the shortest siddg=1.1a. Positive aspect ratios denote
sets the frequency difference between peaks. For exampleradlike samplegthe aspect ratia/a on the right sidg nega-
sample that is a cube of an isotropic material has a three-foltive aspect ratios denote platelike samplg® aspect ratio
degeneracy in all of its resonance frequencies. Thus we cana/c on the left side A homogeneous, isotropic sample
use geometry to minimize peak overlap due to a @w with elastic tensor appropriate to basalt was used. As the
In Fig. 2, calculated resonance frequencies are plottedspect ratio is increased, sensitivitydp increases. For ex-

(13

D. Distinct resonance peaks
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FIG. 3. ¢4, dependence as a function of aspect ratio. The sample is at a .
constant volume of 4.8 cinb=1.1a, and the aspect ratio @a on the right C33=(1— 2¢) Co, (18
side, —a/c on the left side. The elastic constants asg=86.6 GPa and
C44=31.9 GPa. C44=0.31—1.5¢)Cy, (19
ample, for a sample witb/a= 4, seven of the first ten modes Ce6=0.3(1+3¢)Cy. (20
have ac;; dependence over 20%, as opposed to only two
modes forc/a=1. As € varies from 0 to 0.25, the elastic tensor varies from

isotropic to hexagonal. Independent @f Cq;+ CootCag
=3Cp; CqotCi3t+Co3=1.2Cy; and Caat Csst Cee=0.9Cy.
F. Anisotropy For €e=0.25 the elements of the elastic tensor have relative
values approximately that of zirfc.

If isotropic symmetry is broken in a single direction, the Sensitivity to anisotropy is calculated as followd)

sample has hexagonal symmetry and is called transverse
isotropic. Many consolidated materials, such as sedimentar?ezg?‘zicveal;]rgzu?é ;’esar:;:‘ Et.hS)hecxaallgl(J)Ir?: ;Cgtel?nweiir%g the
rock and laminar systems, are transversely isotropic. The ’

. . . elastic tensor in Eq9.14)—(20), and call these frequencies
elastic tensor of a system with hexagonal symmetry has f|Vﬁ1e experimentally measured frequencids (3) Fit these
independent elements;;, Ca3, C13, Cs44, @aNdCgg. Thus in P y q

order to determine the elastic tensor for a system with hextrequenuesfn with an isotropic model, i.e., minimize Eq.

; M
agonal symmetry, we might expect to need 25 resonance?) Ias:ymzlgt]hthat thf” depend only orey; and ;.
frequencies. This is a prohibitively large number for 16w N Hg. € rms lrequency error,
samples. Can we detect anisotropy with the lowest 10

. . e . 10
modes? The following is a test of the sensitivity of RUS to 1 > fa—fa)? o1
anisotropy. rms erroe 10/&4 f?]( ' (22)
Consider a hexagonal elastic tensor
Ciy Cp Ci3 0O O O is shown as a function of, for various aspect ratias'a, and

b/a=1.1. In the figure, aspect ratios less than one are repre-
sented as negative reciprocals, eajg=1/4 is represented
Ci3 Ci3 €z 0 0 O asc/a=—4. Forc/a=4, the rms error is less than 1% for
M= 0 0 0 cy 0 O] (14 ¢<0.22. If we choose 1% error as the threshold between a
good fit and a bad fit, we do not have enough information
0 0 0 0 c4 O about the elastic properties of the system to recognize that it
0 0 0 0 0 cg is anisotropic if we are given only the first ten modes. For
c/a=2, the rms error rises fastest as the degree of anisotropy
increases. This implies that tleda= 2 aspect ratio provides
€11=(1+€)Co, (15  the best detection of anisotropy. However, the ability to ac-
_ _ curately determine the elastic tensor for an anisotropic
C12=0.41-2€)Co, (16 sample will still depend on having a data set with 20 or more
C13=0.4(1+¢€)Cy, (170  resonance frequencies.

C2 €1 C3 0O O O

where
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FIG. 5. Aspect ratio as a function of volume for the 13 samples studiedFIG. 6. €1, versuscy, for the 13 samples studied. Samples are black gabbro
Samples are black gabb(BG), pink quartzite(PQ), Berkeley blue granite  (BG), pink quartzite(PQ), Berkeley blue granit¢BB), Sierra white granite
(BB), Sierra white granitéSW), and basaltB). (SW), and basaltB).

I1l. RESULTS AND CONCLUSIONS Table | contains the RUS derived elements of the isotro-

The previous section has provided a foundation for thé:’ic elastic tensors of_the 13 samples. The reported val@® of
investigation of real samples. RUS experiments and analysf§ the aver]:':lge qual_lty factor for the lowest ten measured
were performed on five rock types. The sample set consist&Sonance frequencies,

of 13 parallelepipeds: 6 of Berkeley blue granite, 1 of pink 1 0 fX
quartzite, 1 black gabbro, 2 of Sierra white granite, and 3 of Q= 1—021 K (22)
n= n

basalt. Multiple samples of the same rock type were cut from
a single large specimen. Figure 5 shows the aspect ratios amvzhereAff]< is the full-width at half-maximum of the reso-
volumes spanned by the sample set. nance intensity centered é,f The error in the right-most
For each sample, an estimate of the expected isotropicolumn is given by Eq(21). The isotropic moduli derived
elastic tensor was used to calculate the expe¢tedde)  for each sampleg,; andc,, are also shown in Fig. 6.
resonance frequencies for the sample. These model frequen- Notice that for all black gabbro samples, the shear
cies were used to guide the experimental search for resanodulus €,4) is consistently 35—-36 GPa, while the com-
nances. RUS scans were performed for each sample to fingressional modulusc(,) varies by 20%. As indicated in the
the first ten experimental resonance frequencies. The first tgmercentc,, column of the table, the compressional modulus
visible experimental resonant modes are not always the firstaries because it is not heavily involved in the resonant
ten modes as predicted by the model, i.e., some modes aneodes used for the fit&Sec. Il B. The smallest aspect ratio
missing in the experiment. Thus while the data analysis wablack gabbro sample has the largest rms frequency error, as
always performed with ten experimentally measured resoexpected. However, there is no direct correlation between
nance frequencies, the mode identities are not necessarily thes frequency error and aspect ratio. Too many other factors
same from sample to sample. play a role, such as volume and the presence of inhomoge-

TABLE I. Sample set 1. Samples are black gabfB&), pink quartzite(PQ), Berkeley blue granitéBB),
Sierra white granitéSW), and basaltB). The samples are characterized by smallest ajdespect ratic/a,
volume V, relative size of inhomogeneit§/a, quality factorQ, compressional modulus,,, percentage of
compressional modulus involvement in the ten modes used for the fit, shear mogylasd rms error in the
RUS fit to resonance frequencies.

Sample a(cm) cla V(cmd) &la Q c;1(GP@  %cy;  Ch(GPA % error

BG-1 2.8 14 34 0.23 350 101 14 35 1.23
BG-2 2.3 2.6 35 0.28 350 108 12 36 0.27
BG-3 10 4.0 4.4 0.32 350 121 14 36 0.48
BG-4 13 3.9 9.1 0.24 350 107 16 35 0.39
BG-5 1.6 3.9 17 0.31 350 117 10 36 0.71
BG-6 2.0 4.0 36 0.21 350 110 16 36 0.31
PQ 2.0 4.0 35 1.7 250 69 42 35 1.4
BB 2.0 4.0 35 0.20 230 32 26 13 13
SW-1 0.96 3.3 3.7 0.46 150 40 51 24 15
SW-2 17 4.0 23 0.17 140 38 54 19 0.61
B-1 2.1 1.4 16 0.29 275 88 13 31 0.69
B-2 2.8 2.0 46 0.04 255 84 14 32 0.47
B-3 1.7 3.9 23 0.06 335 87 20 32 0.31
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neity. An important factor in RUS experiments, that cannotAPPENDIX: PERTURBATION THEORY FOR
be easily quantified, is user confidence. While the results of 8ONIDEAL SAMPLE GEOMETRY
RUS fit may not provide direct evidence that a high aspect
ratio sample gives better results than a low aspect rati
sample, the picking of the resonance peé&kscomplished
primarily by hand and eyeis easier for high aspect ratios, sz dx(x)
since the peaks are more spread @tg. 2).

If we require that the rms frequency error in the RUS fits hereu is the displacement vector at positignc: . is the
be less than 1%, the results from BG-1, BB, and SW-1 would”" b P NCija

be considered invalid. Notice that the elastic tensors derivegharﬁa::eéegjgrr’g]eﬂgargiis; ggsféﬁﬁ'atfspi:&fscl::g;iefheare
for the two Sierra white granite samples are within 20% of '

each other, even though the rms frequency errors are wildly(?Xtent or figure of the sample,

different. Again, the rms frequency error is not a reliable test 1, x inside the sample
of the validity of resqlts. Indeed, the commonlly accepted ¢(X):[O, x outside the sample. (A2)
values of the moduli of Berkeley blue granite acg;
=30 GPa andc,,=13 GPa. Given inherent variability in Equation(Al) is quite general, allowing for(1) an arbitrary
samples, and the low dependence of the measured reson&fMPple figurep(x); (2) a nonuniform density(x); and(3)
modes oncy;, the results for Berkeley blue granite are re- @ nonuniform elastic tensayjy (x).
markably good. The rms frequency error is not directly cor- ~ The equation of motion for the normal modes is found
related with any of the variables we studied, i.e., aspect ratid?y varyingL with respect tou; . If the traction on the sur-
volume, Q, or relative inhomogeneity. However, it is still a faces defined bys(x) vanishesy; satisfies a wave equation
measure of how well our experimental RUS results can b the form
modeled. 9
The modeling in Sec. Il and the results shown in Table | p(X)w?u;+ v
indicate that RUS is a viable technique for characterizing the J
average elastic behavior of inhomogeneous materials. Alfor x inside the sample. The condition that the traction on the
though larger rms errors can be expected for inhomogeneowsirfaces vanish is enforced by holding the sample so that it is
materials than those acceptable for homogeneous samplefectively free standing.
(less than 0.5%, our results are generally close for different ~ The equation of motion fou; , Eq. (A3), can be cast in
samples of the same material, and consistent with acceptdtie form of a variational problert. That is, the quantity
valuest® We have found that high aspect ratio samples are»?[u;], where

The elastic energy of a solid body, in steady state at
?requencyw, is described by the Lagrangian
du;j duy

2 B 1 AL
ZP(X)Ui 2¢ijk|(><)aXj %)’ (A1)

07Uk
Cijki (X) 8_x|) =0 (A3)

easier to work with than low aspect ratio samples, although FAXA(X) i (X)IU; 19X; U/ IX
our results indicate that this is primarily a user preference  w?[u;]= (;Jk' et Rl Sy (A4)
issue, rather than an accuracy issue. A hypothesis that re- Jdxg(x)p(x)u;

mains untested is whether anisotropy is more likely to bemust be stationary subject to arbitrary variationsuptcon-
detected with low aspect ratio samples than with high aspedlistent with traction free boundaries. Using this form for the
ratio samples. normal mode frequencies it is possible to make a systematic
The future of RUS as a characterization tool for inho-study of the consequences of changeditx), p(x), and
mogeneous materials may be more connected to the sensitigy,, (x). Assume the ideal sample is a rectangular parallel-
ity of resonant modes to changes in the elastic state of gpiped specified byp,, has uniform densityp,, and has
system, than to the ability of the RUS inversion technique tauniform elastic constantsf,,. Then variations in these
accurately predict the elastic tensor. Preliminary measurequantities are given bys¢(x)= ¢(X)— ¢o, Sp(X)=p(X)
ments of resonances of Berea sandstone as a function ofp, andgcijkl(x):cijkl(x)—c?jkl_ To first order indg, dp,
temperature, show that the elastic behavior of Berea sanénd sc we have
stone at low temperatur@ess than 200 Kis repeatably

hysteretict'2 These measurements also indicate that the wzzﬁ n 5NC+ ONy D, Dy (A5)
elastic tensor is softening, rather than hardening, as the tem- Do No No Do Do
perature is lowered. RUS may prove to be a useful techniqugnere
for probing changes in elastic state under extreme conditions.
Ju; du
=0 O Tk
No C|1k|J dXd’oﬁxj o (AB)
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